
Help Index for SoundTool

Info about SoundTool

The SoundTool window

The SoundTool menu

Informations for Programmers:
File formats
Clipboard usage
Examples for clipboard data exchange
Adding a DLL for recording sounds

Info about SoundTool

for
Microsoft Windows

Version 3
© 1990-1991 by Martin Hepperle

SoundTool is a simple utility to manipulate sampled 8-bit sound data.

It relies on the dynamic link library DSOUND.DLL (© 1990-1991 by Aaron Wallace) to play a
user selected part of the complete sound sample.

SoundTool can cut, copy and paste parts of a sample to the clipboard and perform various
modifications to the whole sound sample or to a part of the sample.

To use SoundTool efficiently a is necessary. Some functions cannot be used without such
a beast.

The SoundTool window
After firing up SoundTool the following window is displayed:

Items in SoundTool window:
The window contains the following controls and displays:

actual sound a listbox which displays a list of loaded sounds. You can select one to
be the ‘actual sound’ by clicking with the mouse on it.

Delete delete the actual sound from memory by clicking with the mouse on
this button. The sample is lost if you don´t save it into a file before
you select this option!

Play You can play the selected part of the actual sound by clicking with the
mouse on this button.

Animate When this checkbox is checked, pressing the ‘Play’-button replays the
sound and, while playing, the played part is colored in red; you can
stop playing by pressing any key. This will set the ‘Stop’ slider to the
position where you pressed the key. Because the sample is played in
small chunks corresponding to one pixel in the spectrum windo, you
will get a bad sound quality; --how bad it is, depends on the length of
your sample. Animate is a helpful tool to locate a specific    location in
a sample by listening and pressing a key.

Repeat When this checkbox is checked, pressing the ‘Play’-button replays the
sound forever; you can stop playing by pressing any key or by clicking
the checkbox again while sound is playing. Do not press any other
keys or try to switch to another application while the sound is playing,
you can find yourself caught in an endless loop.

Frequency Select the frequency which is used to play the marked region of the
sound by dragging the slider in the scrollbar or by clicking on the
arrows at the end of the slider.

Shift Select a frequency shift with this scrollbar.

Volume Change the sound volume by dragging the elevator of this slider.

Start This is the left indicator in the spectrum window. It is used to indicate
the first byte of a selection. You can change it´s position by pressing
the mouse button in the left-pointing triangle beneath the sprectum
window or near the left of the vertical dotted line in the spectrum
display. Drag the slider into the position you desire and release the
mouse button.

Stop This is an indicator for the last selected byte; you can move it using
the mouse    in the same way as described above.

Description This text string describes the sound by up to 95 characters.

Spectrum window This display shows the spectrum of actual sound. The two sliders near
the bottom (Start and Stop) can be moved by clicking on them and
moving the mouse.
The left slider indicates the start of a selection, the right one marks
the end of the selection.

Menu Items:
SoundTool displays a menu bar near the top of it´s window where the following menu items
can be found:

File
Þ File Open... Loads the seleted sound file into memory and updates the listbox.

It is possible to load one of the following sound file types:
Þ 8-Bit raw *.SOU 8-Bit sampled raw sound bytes without any

header.
Implementation follows when standard header format is defined:
Þ Sound *.SND 8-Bit sampled sound bytes with header. These

files can actually be in two formats:
1. files created by Aaron Wallace´s SOUNDER
including a short header.
2. files created by SoundTool including a longer
header (see description of file formats below).
SoundTool automagically detects which kind of
SND file it is reading.

Þ NeXT *.NXT one of the sound formats used by the NeXT
computer. These files must contain raw 16-Bit
samples which are reduced internally by
SoundTool to 8-Bit. The NeXT mLaw-format is
not supported yet.

Þ SUN Audio *.SUN sound format used by the SUN SparcStation.
These files contain 8-Bit samples in mLaw-
format which are reduced by SoundTool to 8-Bit.

Þ ANSI *.TXT Text format. The file must contain integers in
the range 0...255 separated by blanks, tabs or
newlines. It is possible to create a text file of
this structure e.g. with Microsoft Excel by
specifying a function like ´255*sin(x)+1)´.
Example for a legal file format:
127 200 220
230
255
 220
 220

Þ File Save... Writes the raw sound spectrum of the actual sound to a file. The
various formats are explained above (File Open...).

Edit
Þ Repeat last command

This option repeats the last command which is often easier then the
access through the popup menu tree

Þ Edit Selection
Þ Flip flips the marked part of the spectrum in vertical direction

 gets flipped to:

Þ Reverse reverses the byte sequence of the marked part of the spectrum

 gets reversed to:

Þ Expand doubles each byte of the marked part of the spectrum, uses
linear interpolation to produce a smooth result.

This has the same effect as a local decrease of frequency.

is expanded to:

Þ Shrink collapses every two bytes of the marked part of the spectrum;
uses average of the two bytes

This has the same effect as a local increase of frequency.

 is shrinked to:

Þ Amplify to nnn% scales each bytes in the selected area of the spectrum
by a factor of nnn/100 .

This results in a local in- or decrease of amplitude (sound volume). If
the sound amplitude would exceed the limits (±127) the result is clipped to these limits. The
Amplification rate can be set by the menu option ‘Preferences-Amplification...’

 is scaled to:

Þ Fade In fades the bytes in the selected area of the spectrum by an
linear increasing    factor raising from 0 to 100 % of the original value.

This results in a local fade in effect.

 is faded in to:

Þ Fade Out fades the bytes in the selected area of the spectrum by an
linear decreasing    factor raising from 100% to 0%.

This results in a local fade out effect.

 is faded out to:

Þ Echo produces echos in the marked part of the spectrum, starting at the
position of the left slider. If necessary the sample length is enlarged to avoid truncation of
echos. The echo parameters can be set by the menu option ‘Preferences-Echo...’

Þ Copy copies the marked part of the spectrum to the clipboard
Þ Cut cuts the marked part from the spectrum to the clipboard
Þ Delete deletes the marked part from the spectrum

Þ Edit Clipboard
Þ New Sound pastes the clipboard contents into a new sound slot, updates listbox
Þ Insert inserts the clipboard contents at position marked by left slider in

spectrum window
Þ Append appends the clipboard contents to the end of the actual spectrum
Þ Overlay overlays the clipboard contents beginning at the position marked by

left slider in spectrum window; useful for echo effects. If necessary
the overlay is clipped to the length of the actual sample.

Record Starts sampling of Sound data. (Only applicable if you have an A/D-
board and matching RECDLL.DLL installed).

Settings
Þ Echo... enter the number of echos and the delay between echos:

If the delay between echos is too small you will get something that
sounds like a direct feedback.

Þ Record... enter the number of samples to record and a loop delay count to
adjust the recording frequency. (Only applicable if you have an A/D-
card and matching RECDLL.DLL installed).

Þ Amplification... enter the amplification factor which is used by the menu option
‘’Edit-Selection-Amplify to nnn%.

Info
Þ F1 Help how the hell did you manage to display this help text ?
Þ Info... same boring stuff as usual

File formats
SoundTool can save sound samples in various formats:
8 bit raw format this is nothing more but a stream of contigout bytes without any

header.
ANSI format this is the same like the above raw format, but in a human readable

form, one byte per line.
Sounder SND: has been defined by Aaron Wallace and is used by his program

‘Sounder’. It contains a short header of 32 bytes of which 8 bytes are
actually used:
WORD wSampleSize
WORD wFrequency
WORD wVolume
WORD wShift

SoundTool SND: contains more informations in it´s header:
char szMagic[6] = { ´S´,´O´,´U´,´N´,´D´, 0x1a }
GLOBALHANDLE hGSound; /* not used */
DWORD dwBytes; /* length of complete sample */
DWORD dwStart; /* first byte to play from sample
*/
DWORD dwStop; /* first byte NOT to play from
sample */
WORD wFreq; /* frequency */
WORD wSampleSize;
WORD wVolume;
WORD wShift;
char szName[96]; /* name of sound */
The part of this header which follows the magical string is identical to
the one used for clipboard transfer.

Clipboard data exchange structure
SoundTool registers a clipboard format "CF_SOUND" which can be used to exchange sound
data between applications. Clipboard data in "CF_SOUND" format consists of a structure
which contains general data, followed by the bytes which build the actual sound spectrum.

The following data structure is used for clipboard transfer and inside SoundTool:

#define DESCR_LEN 96 /* max. length of a filename */
typedef struct sound_tag
 {
 GLOBALHANDLE hGSound; /* not used for clipboard transfer */
 DWORD dwBytes; /* length of complete sample */
 DWORD dwStart; /* first byte to play from sample */
 DWORD dwStop; /* first byte NOT to play from sample */
 unsigned short usFreq;
 unsigned short usSampleSize;
 unsigned short usVolume;
 unsigned short usShift;
 char szName[DESC_LEN]; /* name of sound */
 } SAMPLE;

usFreq must have one of the following values:
{ 5500, 7330, 11000, 22000 }

Examples for clipboard data exchange
The following two code fragments from soundtool show how to copy and paste sound data
to/from the clipboard.

/***/
static SAMPLE Sound;
/***/
BOOL CopySound(HWND hWnd)
/* copy a sound sample to the clipbaord */
{
 GLOBALHANDLE hGSample;
 SAMPLE FAR * lpSample;
 BYTE HUGE * lpCopySound;
 BYTE HUGE * lpSound;
 BOOL bReturn;
 DWORD dwBytes;

 bReturn = FALSE;
 dwBytes = min(Sound.dwBytes, (Sound.dwStop - Sound.dwStart));
 if(NULL != (hGSample =
 GlobalAlloc(GMEM_MOVEABLE, sizeof(SAMPLE) + dwBytes)))
 {
 if(NULL != (lpSample = (SAMPLE FAR *)GlobalLock(hGSample)))
 {
 lpCopySound = sizeof(SAMPLE) + (BYTE HUGE *)lpSample;
 lpSound = (BYTE HUGE *)GlobalLock(Sound.hGSound);
 lpSound += Sound.dwStart;
 lpSample->dwBytes = dwBytes;
 lpSample->dwStart = 0;
 lpSample->dwStop = dwBytes;
 lpSample->usFreq = Sound.usFreq;
 lpSample->usSampleSize = Sound.usSampleSize;
 lpSample->usVolume = Sound.usVolume;
 lpSample->usShift = Sound.usShift;
 lstrcpy(lpSample->szName, Sound.szName);
 while(dwBytes--)
 {
 *lpCopySound++ = *lpSound++;
 }
 GlobalUnlock(Sound.hGSound);
 GlobalUnlock(hGSample);

 if(OpenClipboard(hWnd))
 {
 EmptyClipboard();
 SetClipboardData(wFormat, hGSample);
 CloseClipboard();
 bReturn = TRUE; /* yes, we finally did it ! */
 }
 else
 {
 ;/* cannot open clipbard, tell user about problem */
 }
 }
 else

 {
 ;/* cannot lock sample structure, tell user about problem */
 }
 }
 else
 {
 ;/* cannot allocate sample structure, tell user about problem */
 }

 return(bReturn);
}

/***/

BOOL PasteSound(HWND hWnd)
/* pastes sample from clipboard into next free slot */
{
 GLOBALHANDLE hGSample;
 SAMPLE FAR * lpSample;
 BYTE HUGE * lpCopySound;
 BYTE HUGE * lpSound;
 BOOL bReturn;
 DWORD dwBytes;

 bReturn = FALSE;

 if(wSounds >= MAXSOUNDS)
 {
 /* cannot paste any more sounds, tell user about problem */
 return(bReturn);
 }

 if(FALSE == OpenClipboard(hWnd))
 {
 /* cannot open clipboard, tell user about problem */
 return(bReturn);
 }

 if(NULL != (hGSample = GetClipboardData(wFormat)))
 {
 if(NULL != (lpSample = (SAMPLE FAR *)GlobalLock(hGSample)))
 {
 if(NULL != (Sound.hGSound =
 GlobalAlloc(GMEM_MOVEABLE, lpSample->dwBytes)))
 {
 if(NULL != (lpSound =
 (BYTE HUGE *)GlobalLock(Sound.hGSound)))
 {
 lpCopySound = sizeof(SAMPLE) + (BYTE HUGE *)lpSample;
 Sound.dwBytes = lpSample->dwBytes;
 Sound.dwStart = lpSample->dwStart;
 Sound.dwStop = lpSample->dwStop;
 Sound.usFreq = lpSample->usFreq;
 Sound.usSampleSize = lpSample->usSampleSize;
 Sound.usVolume = lpSample->usVolume;
 Sound.usShift = lpSample->usShift;
 lstrcpy((Sound.szName), lpSample->szName);

 dwBytes = Sound.dwBytes;
 while(dwBytes--)
 {
 *lpSound++ = *lpCopySound++;
 }
 GlobalUnlock(Sound.hGSound);
 bReturn = TRUE; /* we finaly arrived here */
 }
 else
 {
 /* cannot lock destination array, free it */
 /* and tell user about problem */
 GlobalFree(Sound.hGSound);
 }
 }
 else
 {
 /* cannot alloc destination array, tell user about problem */
 }
 GlobalUnlock(hGSample);
 }
 else
 {
 /* cannot lock clipboard structure, tell user about problem */
 }
 }
 CloseClipboard();

 return(bReturn);
}
/***/
/* end of sample code */
/***/

Adding a DLL for recording sound samples
SoundTool contains a mechanism that makes it possible for a Windows-pogrammer to
incorporate recording subroutines by writing a DLL which conforms to the following
interface. Whenever SoundTool is started, it looks for a file ‘RECDLL.DLL’. If a file of this
name is found in the directory where SoundTool resides, it is loaded into memory and the
menu of SoundTool offers two items to call into this DLL:

· Record
· Settings ® Record...

To be callable from SoundTool the DLL must have at least two exported functions with ordinal
numbers @3 and @2:

@3 This routine is called when the menuitem ‘Record’ is selected. The routine must
confirm to the following calling sequence:
BOOL FAR PASCAL RecordSample(HWND, SAMPLE FAR *);
The routine should global-allocate memory for the sampled data, record the sample
and fill the SAMPLE structure with the corresponding data. The pointer to this structure
is set up by SoundTool and must not be changed or modified. Just set all elements of
the structure according to the definition above (Clipboard transfer).

 @2 This routine is called when the menuitem ‘Settings ® Record...’ is selected. The routine
must confirm to the following calling sequence:
BOOL FAR PASCAL RecordSetup(HWND);
The routine should ask the user for all the recording parameters needed, and save
them in the library data segment. The library is released when the user quits
SoundTool, so it is advisable to store needed Parameters in ‘WIN.INI’. These parameters
can be loaded when LibMain is called at load time of the library.

The following examples shows excerpts from my sample RECDLL which uses an 8-bit A/D
converter to sample audio data at up to 40 kHz. The library must be named RECDLL.DLL
and must contain at least the two exported ordinals @2 and @3.
__

RECDLL.DEF file showing EXPORTS with ordinal numbers.
__

LIBRARY RECDLL
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA MOVEABLE SINGLE
HEAPSIZE 1024
EXPORTS
 WEP @1 RESIDENTNAME ;necessary for Windows
 RecordSetup @2 ;necessary for SoundTool
 RecordSample @3 ;necessary for SoundTool
 RecordDlgProc @4 ;used internally by RECDLL
__

RecordSetup routine gets called by SoundTool and asks user for parameters.
__
BOOL FAR PASCAL RecordSetup(HWND hWnd)

{
 FARPROC lpProcDialog;
 BOOL bReturn;

 lpProcDialog = MakeProcInstance((FARPROC)RecordDlgProc, hInst);
 bReturn = DialogBox(hInst, "RECORD_DLG", hWnd, lpProcDialog);
 FreeProcInstance(lpProcDialog);

 return(bReturn); /* return TRUE if OK */
}
__

RecordSample routine gets called by SoundTool and returns the actual data.
__
BOOL FAR PASCAL RecordSample(HWND hWnd, SAMPLE FAR * pSound)
{
 GLOBALHANDLE hGSound;
 BYTE HUGE * lpSound;
 BYTE HUGE * lpSoundStart;
 DWORD dwElapsed, dwStartTick, dwStopTick, dwBytes, dwFrequency;
 BOOL bReturn;

 bReturn = FALSE;

 dwBytes = dwRecordBytes;

 if(NULL != (hGSound = GlobalAlloc(GMEM_MOVEABLE, dwBytes)))
 {
 if(NULL != (lpSound = (BYTE HUGE *)GlobalLock(hGSound)))
 {
 pSound->hGSound = hGSound;
 pSound->dwBytes = dwBytes;
 pSound->dwStart = 0;
 pSound->dwStop = dwBytes;
 pSound->usFreq = 22000;
 pSound->usSampleSize = 0;
 pSound->usVolume = 20;
 pSound->usShift = 4;
 MessageBeep(0);
 lpSoundStart = lpSound;
 dwStartTick = GetTickCount(); /* ms */
 if(nRecordDelay)
 {
 outp((usPort+1), 0x0000); /* start conversion */
 while(dwBytes--)
 {
 /* get a byte from A/D converter */
 *lpSound++ = (BYTE)inp(usPort);
 outp((usPort+1), 0x0000); /* start next conversion */
 _asm
 {
 mov cx, nRecordDelay /* loop counter */
 WaitLoop:
 loop WaitLoop /* empty loop */
 }
 }
 }

 else
 {
 outp((usPort+1), 0x0000); /* start conversion */
 while(dwBytes--)
 {
 /* get a byte from A/D converter */
 *lpSound++ = (BYTE)inp(usPort);
 outp((usPort+1), 0x0000); /* start next conversion */
 }
 }
 dwStopTick = GetTickCount(); /* ms */
 MessageBeep(0);

 lpSound = lpSoundStart;
 dwBytes = pSound->dwBytes;
 while(dwBytes--)
 {
 if(*lpSound > 127)
 *lpSound -= 128;
 else
 *lpSound += 128;
 *lpSound++;
 }
 GlobalUnlock(hGSound);

 /* elapsed time in milliseconds */
 if(dwStopTick < dwStartTick)
 dwElapsed = 0xffffffff - dwStartTick + dwStopTick;
 else
 dwElapsed = dwStopTick - dwStartTick;
 dwFrequency = (DWORD)(1000.0 * ((double)pSound->dwBytes /

(double)dwElapsed));
 pSound->usFreq = (unsigned int)dwFrequency;
 wsprintf(szBuffer, "Recorded at %u [Hz]", dwFrequency);
 lstrcpy(pSound->szName, szBuffer);
 bReturn = TRUE;
 }
 else
 {
 /* cannot lock new sound bytes */
 GlobalFree(hGSound);
 }
 }
 else
 {
 /* cannot allocate memory for new sound bytes */
 }

 return(bReturn);
}
__

RecordDlgProc routine gets called by RecordSetup and asks user for parameters.
__
BOOL FAR PASCAL RecordDlgProc(HWND hDlg, unsigned message, WORD wParam, LONG

lParam)
{

 int nDelay;
 DWORD dwBytes;

 switch(message)
 {
 case WM_COMMAND:
 if(ID_OK == wParam)
 {
 GetDlgItemText(hDlg, ID_RECORDNUMBER, szBuffer, sizeof(szBuffer)

);
 dwBytes = (DWORD)atol(szBuffer);
 GetDlgItemText(hDlg, ID_RECORDDELAY, szBuffer,

sizeof(szBuffer));
 nDelay = atoi(szBuffer);

 if(nRecordDelay != nDelay)
 {
 nRecordDelay = nDelay;
 wsprintf(szBuffer, "%d", nRecordDelay);
 WriteProfileString(szAppName, szRecordDelay, szBuffer);
 }

 if(dwRecordBytes != dwBytes)
 {
 dwRecordBytes = dwBytes;
 wsprintf(szBuffer, "%lu", dwRecordBytes);
 WriteProfileString(szAppName, szRecordBytes, szBuffer);
 }
 EndDialog(hDlg, TRUE);
 }
 else if(ID_CANCEL == wParam)
 {
 EndDialog(hDlg, FALSE);
 }
 break;

 case WM_INITDIALOG:
 wsprintf(szBuffer, "%lu", dwRecordBytes);
 SetDlgItemText(hDlg, ID_RECORDNUMBER, szBuffer);
 wsprintf(szBuffer, "%d", nRecordDelay);
 SetDlgItemText(hDlg, ID_RECORDDELAY, szBuffer);
 SetFocus(GetDlgItem(hDlg,ID_RECORDDELAY));
 return(FALSE);
 break;
 }
 return(FALSE);
}
__

LibMain routine gets called by LIBENTRY.ASM when the DLL is loaded.
__
BOOL FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSegment,
 WORD cbHeapSize, LPSTR lpszCmdLine)
{
 hInst = hInstance;

 /* get stored parameters from WIN.INI */

 GetProfileString(szAppName, szRecordBytes, "?",
 szBuffer, sizeof(szBuffer));
 if('?' == szBuffer[0])
 {
 /* no entry found, use default */
 dwRecordBytes = 50000;
 wsprintf(szBuffer, "%lu", dwRecordBytes);
 WriteProfileString(szAppName, szRecordBytes, szBuffer);
 }
 else
 {
 dwRecordBytes = (DWORD)atol(szBuffer);
 }
 GetProfileString(szAppName, szRecordDelay, "?",
 szBuffer, sizeof(szBuffer));
 if('?' == szBuffer[0])
 {
 /* no entry found, use default */
 nRecordDelay = 0;
 wsprintf(szBuffer, "%d", nRecordDelay);
 WriteProfileString(szAppName, szRecordDelay, szBuffer);
 }
 else
 {
 nRecordDelay = atoi(szBuffer);
 }
 GetProfileString(szAppName, szRecordPort, "?",
 szBuffer, sizeof(szBuffer));
 if('?' == szBuffer[0])
 {
 /* no entry found, use default */
 usPort = 0x300;
 wsprintf(szBuffer, "%u", usPort);
 WriteProfileString(szAppName, szRecordPort, szBuffer);
 }
 else
 {
 usPort = (unsigned int)atoi(szBuffer);
 }

 if(cbHeapSize > 0)
 UnlockData(0); /* make segment moveable */

 return(TRUE);
}
__

GlobalVariables used by RECDLL
__
DWORD dwRecordBytes; /* number of bytes to record */
int nRecordDelay; /* delay loop count */
HANDLE hInst; /* library instance handle */
unsigned int usPort; /* A/D converter port address */
char szBuffer[80]; /* avoid buffer on stack DS != SS */
char szAppName[] = "SoundTool";
char szRecordBytes[] = "RecordBytes";

char szRecordDelay[] = "RecordDelay";
char szRecordPort[] = "RecordPort";
__

Makefile used to create RECDLL
__
all: recdll.dll

recdll.obj: recdll.c recdll.h
 cl -c -Asnw -Gsw -Oas -Zpe -FPi -W3 recdll.c

libentry.obj: libentry.asm
 masm -Mx libentry,libentry;

recdll.res: recdll.rc recdll.dlg recdll.h
 rc -r recdll.rc

recdll.dll: libentry.obj recdll.obj recdll.def recdll.res
 link recdll+libentry, recdll.dll,,/NOD /NOE sdllcew+libw, recdll.def
 rc recdll.res recdll.dll
__

RECDLL.DLG used to create RECDLL.RC
__
RECORD_DLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 9, 26, 186, 42
CAPTION "Recording Parameters"
STYLE WS_BORDER | WS_CAPTION | WS_DLGFRAME | WS_POPUP
BEGIN
 CONTROL "&Number of samples:", -1, "static", SS_RIGHT | WS_GROUP |

WS_CHILD, 10, 8, 74, 10
 CONTROL "", ID_RECORDNUMBER, "edit", ES_LEFT | WS_BORDER | WS_TABSTOP |

WS_CHILD, 90, 8, 32, 12
 CONTROL "&Delay count:", -1, "static", SS_RIGHT | WS_GROUP | WS_CHILD, 8,

22, 76, 10
 CONTROL "", ID_RECORDDELAY, "edit", ES_LEFT | WS_BORDER | WS_TABSTOP |

WS_CHILD, 90, 22, 32, 12
 CONTROL "&Cancel", ID_CANCEL, "button", BS_PUSHBUTTON | WS_GROUP |

WS_TABSTOP | WS_CHILD, 134, 6, 46, 14
 CONTROL "&Ok", ID_OK, "button", BS_DEFPUSHBUTTON | WS_TABSTOP | WS_CHILD,

134, 24, 46, 14
END
__

pacp@ds0rus1i.bitnet

aaron@jessica.stanford.edu

